Dimensional Algebra

The letters a, b and c are lengths, A and B are areas and V is a volume. State whether each of the following is a length, an area, a volume or meaningless:

- (a) a + b
- (b) 4πab
- (c) $4\pi a^3$ (d) $2\pi(a + c)$ (e) abc

- $\frac{A}{b}$ (g) 2Ab (h) $\pi B + ac$ (i) πab^2 (j) $\pi (a^2 + b^2)$

- $\frac{V}{a}$ (I) $a^2 + b^3$ (m) a(a + b) (n) $\frac{V}{ab}$ (o) V + ab

Dimensional Algebra

The letters a, b and c are lengths, A and B are areas and V is a volume. State whether each of the following is a length, an area, a volume or meaningless:

- (a) a + b
- (b) 4πab
- (c) $4\pi a^3$ (d) $2\pi(a + c)$ (e) abc

- (f) $\frac{A}{b}$ (g) 2Ab (h) $\pi B + ac$ (i) πab^2 (j) $\pi (a^2 + b^2)$

- (k) $\frac{V}{a}$ (l) $a^2 + b^3$ (m) a(a + b) (n) $\frac{V}{ab}$ (o) V + ab

Dimensional Algebra

The letters a, b and c are lengths, A and B are areas and V is a volume. State whether each of the following is a length, an area, a volume or meaningless:

- (a) a + b
- (b) 4πab
- (c) $4\pi a^3$ (d) $2\pi(a + c)$ (e) abc

- (g) 2Ab (h) $\pi B + ac$ (i) πab^2 (j) $\pi (a^2 + b^2)$

- (I) $a^2 + b^3$ (m) a(a + b) (n) $\frac{V}{ab}$ (o) V + ab

Dimensional Algebra

The letters a, b and c are lengths, A and B are areas and V is a volume. State whether each of the following is a length, an area, a volume or meaningless:

- (a) a + b
- (b) 4πab
- (c) $4\pi a^3$ (d) $2\pi(a + c)$ (e) abc

- (f) $\frac{A}{b}$ (g) 2Ab (h) $\pi B + ac$ (i) πab^2 (j) $\pi (a^2 + b^2)$

- (k) $\frac{V}{a}$ (l) $a^2 + b^3$ (m) a(a + b) (n) $\frac{V}{ab}$ (o) V + ab

Dimensional Algebra

The letters a, b and c are lengths, A and B are areas and V is a volume. State whether each of the following is a length, an area, a volume or meaningless:

- (a) a + b

- (b) $4\pi ab$ (c) $4\pi a^3$ (d) $2\pi(a + c)$ (e) abc

- (f) $\frac{A}{b}$ (g) 2Ab (h) $\pi B + ac$ (i) πab^2 (j) $\pi (a^2 + b^2)$

- (k) $\frac{V}{a}$ (l) $a^2 + b^3$ (m) a(a + b) (n) $\frac{V}{ab}$ (o) V + ab

Dimensional Algebra

The letters a, b and c are lengths, A and B are areas and V is a volume. State whether each of the following is a length, an area, a volume or meaningless:

- (a) a + b
- (b) 4πab
- (c) $4\pi a^3$ (d) $2\pi(a + c)$ (e) abc

- (f) $\frac{A}{b}$ (g) 2Ab (h) $\pi B + ac$ (i) πab^2 (j) $\pi (a^2 + b^2)$

- (k) $\frac{V}{a}$ (l) $a^2 + b^3$ (m) a(a + b) (n) $\frac{V}{ab}$ (o) V + ab