Finding Gradients using Differentiation 1

Finding turning points using differentiation

1) Find the gradient function for the curve $y=x^{5}$.

Hence find the gradient of the curve at the points:
(a) $(1,1)$
(b) $(2,32)$ (c) $(-1,-1)$
2) Differentiate $y=x^{3}-3 x^{2}$.

Hence find the gradient of this graph at the points:
(a) $(0,0)$
(b) $(2,-4)$
(c) $(-1,-4)$
3) Find the derivative of $y=x^{3}-12 x$

Hence find the gradient of this graph at the points:
(a) $(1,-11)(b)(-3,9) \quad$ (c) $(2,-16)$

What does your answer to (c) tell you about the graph at this point?
4) Differentiate:
(a) $y=4 x^{7}$ (b) $y=2 x^{5}-7 x^{2}+6 \quad y=8 x^{3}-5 x+4$

Finding Gradients using Differentiation 2

1) Find the gradient function for the curve $y=\left(x^{2}-3\right)(x+5)$.

Hence find the gradient of the curve at the points:
(a) $(2,7)$
(b) $(3,48)(c)(-1,-8)$
2) Differentiate $y=\frac{1}{x^{3}}$.

Hence find the gradient of this graph at the points:
(a) $(1,1)$
(b) $\left(2, \frac{1}{8}\right)$
3) Find the derivative of $y=\frac{3}{x^{2}}-\frac{1}{x}$

Hence find the gradient of this graph at the points:
(a) $(1,2)$
(b) $(3,0)$
4) Differentiate:
(a) $y=(x-4)(x+2)$
(b) $y=\frac{4}{x}-\frac{5}{x^{2}}$
(c) $y=\frac{3 x^{4}-2 x^{3}}{x^{2}}$

1) Find the turning point(s) on each of the following curves.
(a) $y=x^{3}-12 \mathrm{x}$
(b) $y=12+4 x-x^{2}$
(c) $y=4 x-\frac{16}{x^{2}}$
(d) $y=2 \mathrm{x}^{3}-3 \mathrm{x}^{2}-36 \mathrm{x}$
2) For parts (a) and (b) of question 1 , find the points where the graph crosses the axis
(ie the value of y when $\mathrm{x}=0$, and the values of x when $\mathrm{y}=0$).
Hence draw a sketch showing the general shape of the curve, marking on the x -intercepts and y -intercept, and the turning points.
