COMBINING PROBABILITIES

1) An ordinary die is thrown twice. Find the probability of:
(a) obtaining a number less than 3 on the first throw.
(b) obtaining a 6 on the second throw.
(c) a number less than 3 on the first throw and a 6 on the second throw.
2) A bag contains 6 red beads and 4 white beads. Beads are drawn out one at a time and then REPLACED before the next draw. Find the probability of:
(a) a red bead on the first draw.
(b) a white bead on the second draw.
(c) a red bead on the first draw and a white bead on the second draw.
(d) a red bead on both the first draw and the second draw.
3) Two girls take a practice shot at netball. The probability that Ann will score is $\frac{1}{3}$; the probability that Belinda will score is $\frac{1}{4}$.Find the probability that:
(a) both girls score. (b) Ann scores and Belinda doesn't score.
(c) neither girl scores. (d) Belinda scores and Ann doesn't score.
(e) Add together the answers to parts (a) to (d). Is the answer what you would expect? Explain why.
4) The probability that Jane is late for school is 0.2 . Find the probability that:
(a) She is late for school 3 days running.
(b) She is on time for school every day for a week (5 days).
(c) She late at least once in a week (use the answer to (b)).
(d) She is on time every day for half a term (30 days).
5) There are 180 people at a conference.
(a) What is the probability that none of them have their birthday on June $1^{\text {st }}$? (Assume 365 days in a year ignore leap years.)
(b) What is the probability that at least one of them has their birthday on June $1^{\text {st }}$?
(c) Use trial and improvement to find how many people you would need before it is more likely than not that there is someone with their birthday on $1^{\text {st }}$ June.
6) There are 4 candidates in an election. Their probabilities of winning are reckoned to be: Peter 0.4 ; Quentin 0.2; Richard 0.3.
(a) The fourth candidate is Stephen. What is his probability of winning?
(b) What is the probability that either Peter or Richard will win?
7) There are 4 runners in a race: Alf, Betty, Clarence and Diana.

Their probabilities of winning are $\frac{1}{2}, \frac{1}{12}, \frac{1}{6}$ and $\frac{1}{4}$ respectively.
(a) Add together the 4 probabilities. Is the answer what you would expect?
(b) What is the probability that the race will be won by Betty or Clarence?
(c) What is the probability that the race will be won by a girl?
8) A card is drawn from a complete pack.
(a) What is the probability that it is a Heart?
(b) What is the probability that it is an Ace?
(c) Add together your answers to (a) and (b)
(d) What is the probability that it is either a Heart or an Ace?
(e) Why is your answer to
(d) different to your answer to (c)?
9) A card is drawn from a standard pack of cards and then replaced, after which another card is drawn. Find the probability that:
(a) the first is a club and the second a black card.
(b) both are hearts.
(c) the first is an Ace and the second is not an Ace.
(d) both are Aces.
10) A bag contains 7 beads - 3 blue ones numbered 1,2 and 3 , and 4 green ones numbered 1,2,3 and 4 . A bead is drawn at random. Find the probability:
(a) it is blue (b) it is numbered 4 (c) it is numbered 2
(d) it is blue or numbered 4 (e) it is blue or numbered 2
(f) Is the answer to (d) equal to the sum of the answers to (a) and (b)? Is the answer to (e) equal to the sum of (a) and (c)? Explain.
11) A bag contains 5 red beads and 4 black beads. Beads are drawn out one at a time and NOT

REPLACED before the next draw is made. Find the probability of
(a) a red bead on the first draw.
(b) a black bead on the second draw, GIVEN THAT the first bead drawn was red.
(c) a black bead on the second draw, GIVEN THAT the first bead was black.
(d) a red bead on the first draw and a black bead on the second draw.
(e) a black on both the first and second draws.
12) Repeat Q9 if the first card is not replaced before the second card is drawn.
13) After a lot of trials Angela has worked out that her probability of throwing a javelin over 20 m on a given throw is 0.6
(a) What is her probability of throwing it less than 20 m ?

She has also worked out that her probability of throwing over 30 m is 0.15
(b) What is her probability of throwing less than 30 m ?
(c) What is her probability of throwing over 20 m but less than 30 m ?

