VECTORS IN COMPONENT FORM

All the questions below refer to the following three vectors:

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$

- 1)(a) Draw on squared paper the vectors **a** and **b** "nose to tail", and draw in the vector $\mathbf{a} + \mathbf{b}$. What are the components of $\mathbf{a} + \mathbf{b}$?
- (b) Repeat (a) with vectors **b** and **c**
- (c) Draw separately on squared paper the vectors 2b, a and -c.
- (d) Draw on squared paper the vectors 3a and 2b "nose to tail", and draw in the vector $3\mathbf{a} + 2\mathbf{b}$. What are the components of $3\mathbf{a} + 2\mathbf{b}$?
- (e) Draw on squared paper the vectors 2b and -c "nose to tail", and draw in the vector $2\mathbf{b} - \mathbf{c}$. What are the components of $2\mathbf{b} - \mathbf{c}$?
- 2) Without drawing, calculate the components of the following vectors:
 - (a) $\mathbf{a} + \mathbf{c}$
- (b) 4a + 3b (c) a + 2c
- (d) a b
- 3) The symbol |a| means "the LENGTH of vector a" Use Pythagoras to find |a| and $|\mathbf{b}|$. State the value of $|\mathbf{c}|$.

VECTORS IN COMPONENT FORM

All the questions below refer to the following three vectors:

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$

- 1)(a) Draw on squared paper the vectors a and b "nose to tail", and draw in the vector $\mathbf{a} + \mathbf{b}$. What are the components of $\mathbf{a} + \mathbf{b}$?
- (b) Repeat (a) with vectors **b** and **c**
- (c) Draw separately on squared paper the vectors 2b, a and -c.
- (d) Draw on squared paper the vectors 3a and 2b "nose to tail", and draw in the vector $3\mathbf{a} + 2\mathbf{b}$. What are the components of $3\mathbf{a} + 2\mathbf{b}$?
- (e) Draw on squared paper the vectors 2b and -c "nose to tail", and draw in the vector $2\mathbf{b} - \mathbf{c}$. What are the components of $2\mathbf{b} - \mathbf{c}$?
- 2) Without drawing, calculate the components of the following vectors:
 - (a) $\mathbf{a} + \mathbf{c}$
- (b) 4a + 3b (c) a + 2c
- (d) a b
- 3) The symbol |a| means "the LENGTH of vector a" Use Pythagoras to find |a| and $|\mathbf{b}|$. State the value of $|\mathbf{c}|$.

VECTORS IN COMPONENT FORM

All the questions below refer to the following three vectors:

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$

- 1)(a) Draw on squared paper the vectors a and b "nose to tail", and draw in the vector $\mathbf{a} + \mathbf{b}$. What are the components of $\mathbf{a} + \mathbf{b}$?
- (b) Repeat (a) with vectors **b** and **c**
- (c) Draw separately on squared paper the vectors 2b, a and -c.
- (d) Draw on squared paper the vectors 3a and 2b "nose to tail", and draw in the vector $3\mathbf{a} + 2\mathbf{b}$. What are the components of $3\mathbf{a} + 2\mathbf{b}$?
- (e) Draw on squared paper the vectors 2b and -c "nose to tail", and draw in the vector $2\mathbf{b} - \mathbf{c}$. What are the components of $2\mathbf{b} - \mathbf{c}$?
- 2) Without drawing, calculate the components of the following vectors:

(a)
$$\mathbf{a} + \mathbf{c}$$

(b)
$$4a + 3b$$
 (c) $a + 2c$

(c)
$$a + 2c$$

3) The symbol |a| means "the LENGTH of vector a" Use Pythagoras to find |a| and $|\mathbf{b}|$. State the value of $|\mathbf{c}|$.

VECTORS IN COMPONENT FORM

All the questions below refer to the following three vectors:

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$

- 1)(a) Draw on squared paper the vectors **a** and **b** "nose to tail", and draw in the vector $\mathbf{a} + \mathbf{b}$. What are the components of $\mathbf{a} + \mathbf{b}$?
- (b) Repeat (a) with vectors **b** and **c**
- (c) Draw separately on squared paper the vectors 2b, a and -c.
- (d) Draw on squared paper the vectors 3a and 2b "nose to tail", and draw in the vector $3\mathbf{a} + 2\mathbf{b}$. What are the components of $3\mathbf{a} + 2\mathbf{b}$?
- (e) Draw on squared paper the vectors 2b and -c "nose to tail", and draw in the vector $2\mathbf{b} - \mathbf{c}$. What are the components of $2\mathbf{b} - \mathbf{c}$?
- 2) Without drawing, calculate the components of the following vectors:
 - (a) $\mathbf{a} + \mathbf{c}$
- (b) 4a + 3b (c) a + 2c
- (d) a b
- 3) The symbol |a| means "the LENGTH of vector a" Use Pythagoras to find |a| and $|\mathbf{b}|$. State the value of $|\mathbf{c}|$.