Vectors in component form

- 1) (a) $\begin{pmatrix} 11\\ -2 \end{pmatrix}$ (b) $\begin{pmatrix} 3\\ -6 \end{pmatrix}$ (d) $\begin{pmatrix} 17\\ 0 \end{pmatrix}$ (e) $\begin{pmatrix} 21\\ -12 \end{pmatrix}$ 2) (a) $\begin{pmatrix} -2\\ 4 \end{pmatrix}$ (b) $\begin{pmatrix} 36\\ -2 \end{pmatrix}$ (c) $\begin{pmatrix} -7\\ 4 \end{pmatrix}$ (d) $\begin{pmatrix} -5\\ 10 \end{pmatrix}$
- 3) $|\mathbf{a}| = 5$ $|\mathbf{b}| = 10$ $|\mathbf{c}| = 5$

Vector Questions

- 1) (a) $2\mathbf{v}$ (b) $2\mathbf{w}$ (c) $\mathbf{w} \mathbf{v}$ (d) $2\mathbf{w} 2\mathbf{v}$ BC is parallel to DE and twice as long.
- 2) $\mathbf{OX} = \frac{2}{3} \mathbf{a}$ $\mathbf{OY} = \frac{1}{2} \mathbf{a} + \frac{1}{2} \mathbf{b}$ $\mathbf{OZ} = 2\mathbf{b}$ $\mathbf{XY} = \frac{1}{2} \mathbf{b} \frac{1}{6} \mathbf{a}$ $\mathbf{YZ} = \frac{3}{2} \mathbf{b} \frac{1}{2} \mathbf{a}$ X, Y and Z are collinear (ie they lie in a straight line), and the length of YZ is 3 times the length of XY.
- 3) (a) $\sqrt{29}$ (b) (6, 5) (c) $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$, $\sqrt{17}$ (d) a parallelogram
- 4) (a) b (b) $\frac{1}{2}$ b (c) $\mathbf{a} + \frac{1}{4}$ b (d) $\frac{2}{3}$ $\mathbf{a} + \frac{1}{6}$ b (e) $\frac{1}{6}$ $\mathbf{b} - \frac{1}{3}$ \mathbf{a} (f) $\frac{1}{3}$ $\mathbf{b} - \frac{2}{3}$ \mathbf{a} (g) **FE** = 2**AF**, so FE points in the same direction as AF but is twice as long. (h) AF:FE = 1:2
- 5) (a) $\mathbf{b} \mathbf{a}$ (b) $\frac{2}{3}\mathbf{a} \frac{1}{6}\mathbf{b}$ (c) $4\mathbf{a} \mathbf{b}$ (d) BR is parallel to PQ and 6 times as long
- (u) BK is parallel to FQ and 0 times as long
- 6) (a) $3\mathbf{a} \mathbf{b}$ (b) $\frac{3}{4}\mathbf{a} \frac{1}{4}\mathbf{b}$ (c) $\mathbf{b} \mathbf{a}$ (d) $\frac{3}{4}\mathbf{b} \frac{1}{4}\mathbf{a}$ (e) $\frac{9}{4}\mathbf{b} - \frac{3}{4}\mathbf{a}$ (f) $3\mathbf{b} - 3\mathbf{a}$ (g) CF is parallel to AB and 3 times as long.

(h) A, E and F are collinear, and EF is 3 times as long as AE.

7) $AM = \mathbf{p} + \mathbf{q}$ $AC = \mathbf{p} + 2\mathbf{q}$ $NC = \frac{1}{2}\mathbf{p} + \mathbf{q}$ $NB = \frac{1}{2}\mathbf{p} - \mathbf{q}$ $DB = \frac{2}{3}\mathbf{p} - \frac{4}{3}\mathbf{q}$ $DC = \frac{2}{3}\mathbf{p} + \frac{2}{3}\mathbf{q}$ AM and DC are parallel, and AM:DC = 3:2

Vector equation of a line

(c) 5 km/h

(e) 3.6 km/h

(f) Paths cross at (8, 3). The "Anna" arrives here 4 hours after leaving port. At this time, the "Betty" is at the point (-1, 9).

(g) The "Betty" arrives at the crossing point at t = 7, ie 5 hours after leaving port Q. At this time the "Anna" is at (20, 12)

- (h) At t = 3, the ships are 13.6 km apart
- (i) The "Anna" is sailing on bearing 053.1° The "Betty" is sailing on bearing 123.7°