Vectors in component form

1) (a) $\binom{11}{-2}$
(b) $\binom{3}{-6}$
(d) $\binom{17}{0}$
(e) $\binom{21}{-12}$
2) (a) $\binom{-2}{4}$
(b) $\binom{36}{-2}$
(c) $\binom{-7}{4}$
(d) $\binom{-5}{10}$
3) $|\mathbf{a}|=5$
$|\mathbf{b}|=10$
$|\mathbf{c}|=5$

Vector Questions

1) (a) $2 \mathbf{v}$
(b) $2 \mathbf{w}$
(c) $\mathbf{w}-\mathbf{v}$
(d) $2 \mathbf{w}-2 \mathbf{v}$

BC is parallel to DE and twice as long.
2) $\mathbf{O X}=\frac{2}{3} \mathbf{a}$
$\mathbf{O Y}=\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
$\mathbf{O Z}=2 \mathrm{~b}$
$\mathbf{X Y}=\frac{1}{2} \mathbf{b}-\frac{1}{6} \mathbf{a}$
$\mathbf{Y Z}=\frac{3}{2} \mathbf{b}-\frac{1}{2} \mathbf{a}$
X, Y and Z are collinear (ie they lie in a straight line), and the length of YZ is 3 times the length of XY .
3) (a) $\sqrt{29}$
(b) $(6,5)$
(c) $\binom{-4}{1}, \sqrt{17}$
(d) a parallelogram
4) (a) \mathbf{b}
(b) $\frac{1}{2} \mathbf{b}$
(c) $\mathbf{a}+\frac{1}{4} \mathbf{b}$
(d) $\frac{2}{3} \mathbf{a}+\frac{1}{6} \mathbf{b}$
(e) $\frac{1}{6} \mathbf{b}-\frac{1}{3} \mathbf{a}$
(f) $\frac{1}{3} \mathbf{b}-\frac{2}{3} \mathbf{a}$
(g) $\mathbf{F E}=2 \mathbf{A F}$, so FE points in the same direction as AF but is twice as long.
(h) $\mathrm{AF}: \mathrm{FE}=1: 2$
5) (a) $\mathbf{b}-\mathbf{a}$
(b) $\frac{2}{3} \mathbf{a}-\frac{1}{6} \mathbf{b}$
(c) $4 \mathbf{a}-\mathbf{b}$
(d) BR is parallel to PQ and 6 times as long
6) (a) $3 \mathbf{a}-\mathrm{b}$
(b) $\frac{3}{4} \mathbf{a}-\frac{1}{4} \mathbf{b}$
(c) $\mathbf{b}-\mathbf{a}$
(d) $\frac{3}{4} \mathbf{b}-\frac{1}{4} \mathbf{a}$
(e) $\frac{9}{4} \mathbf{b}-\frac{3}{4} \mathbf{a}$
(f) $3 \mathbf{b}-3 \mathbf{a}$
(g) CF is parallel to AB and 3 times as long.
(h) A, E and F are collinear, and EF is 3 times as long as AE.
7) $\mathbf{A M}=\mathbf{p}+\mathbf{q}$
$\mathbf{A C}=\mathbf{p}+2 \mathbf{q}$
$\mathbf{N C}=\frac{1}{2} \mathbf{p}+\mathbf{q}$
$\mathbf{N B}=\frac{1}{2} \mathbf{p}-\mathbf{q}$
$\mathbf{D B}=\frac{2}{3} \mathbf{p}-\frac{4}{3} \mathbf{q} \quad \mathbf{D C}=\frac{2}{3} \mathbf{p}+\frac{2}{3} \mathbf{q}$
AM and DC are parallel, and $\mathrm{AM}: \mathrm{DC}=3: 2$

Vector equation of a line

(c) $5 \mathrm{~km} / \mathrm{h}$
(e) $3.6 \mathrm{~km} / \mathrm{h}$
(f) Paths cross at $(8,3)$. The "Anna" arrives here 4 hours after leaving port. At this time, the "Betty" is at the point $(-1,9)$.
(g) The "Betty" arrives at the crossing point at $\mathrm{t}=7$, ie 5 hours after leaving port Q . At this time the "Anna" is at $(20,12)$
(h) At $\mathrm{t}=3$, the ships are 13.6 km apart
(i) The "Anna" is sailing on bearing 053.1°

The "Betty" is sailing on bearing 123.7°

