16) (a) (i)
$$\overrightarrow{KN} = \overrightarrow{KA} + \overrightarrow{AN} = -a + b$$

(ii) $\overrightarrow{AC} = 2b + 2c$
(iii) $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC} = -2a + 2b + 2c$
(iv) $\overrightarrow{LM} = \overrightarrow{LC} + \overrightarrow{CM}$
 $= \frac{1}{2}\overrightarrow{BC} + \overrightarrow{CM}$
 $= \frac{1}{2}(-2a + 2b + 2c) + -c$
 $= -a + b + c - c$
 $= -a + b$

(b) KN and LM are parallel and equal in length

17) (a)
$$\overrightarrow{PB} = \overrightarrow{PO} + \overrightarrow{OB} = -\frac{1}{2}a + b$$

(b) $\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = -a + 2b$ So $\overrightarrow{AC} = 2\overrightarrow{PB}$ and hence AC is parallel to PB
(c) From (b), AC = 16cm

19) (a)
$$\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ} = -a + b$$
 or $b - a$

(b)
$$\overrightarrow{OT} = \overrightarrow{OP} + \overrightarrow{PT}$$

 $= \overrightarrow{OP} + \frac{2}{3}\overrightarrow{PQ}$
 $= a + \frac{2}{3}(b - a)$
 $= a + \frac{2}{3}b - \frac{2}{3}a$
 $= \frac{1}{3}a + \frac{2}{3}b$

21) (a)
$$\overrightarrow{PT} = a + b$$

(b) $\overrightarrow{TU} = b - a$