Combining Probabilities

Suppose we have a bag containing 24 counters: 8 red counters numbered 1
to 8, 8 blue counters numbered 1 to 8, § green counters numbered 1 to 8.

A counter 15 taken from the bag at random.

Example 1
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p(Odd number)= —, ~

Thus example 1llustrates the rule that:
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If we know p(X) and p(Y), we can find p(X AND Y) by
(MWL @ W 1WG spitable probabilities

Example 2
l2 32
p(Odd number) = = - l“z, p®= o, =5
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Example 3
p(Red) = 3%4 = é p(8)= a%q-t '\§
PRedORE) = 2, = S
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These two examples illustrate the mle that:

If we know p(X) and p(Y), we can find p(X OR Y) by
ADDING p(X) and p(Y), PROVIDED that X and Y are
MUTUALLY EXCLUSIVE ie they cannot both happen
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Example 4

Ann and Briony are both going to take their dm'mg test. The probabality
that Ann passes 15 $ . and that Briony passes 15 4

(a) Find the probability that they both pass
D (P( Qesses  fwd & ?msu.S) = % >
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(b) Can we ﬁud the probability that Ann OF Briony passes
by addm::_r and 27
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Example 5

There are 4 candidates in a mock election at school, including Ann and
Briony. Only one candidate will be elected. plAnn wins) = 0.4, and
p(Briony wins) =103

What is the probability that Ann OF. Briony is elected?
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Tree diagrams

These are 2 way of showing all possibilities 1 2 systematic way.
Example 1

Ann and Briony are both going to take their droiving test. The probabality
that Ann passes 15 % . and that Brionv passes 15 i

Find the probability that at least one of them passes.

[Let A mean “Ann passes’ and B mean “Brony passes™)
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At least one gurl passes on each of the top three branches. So:

6 s 3 W\
at least one passes)= = = N = = —
P passes) 7Y T (2

Thus illustrates the method for free diagrams:

# DMultiply the probabilities along the branches to get the “AND"
probability at the end of the branch

# Select the requured branches and add the probabilities at the end of
those branches to get the answer

[We really only need to work out the probability at the end of the requured
branches. ]



Example 2

A bag confamns 6 red beads and 4 blue beads. Two beads are taken from the
bag. Find the probability of getting two beads of the same colour

[IMote that the probabilittes for the second bead will change depending on
what colour the first bead was ]
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