N	ı.	,	٠	1	ŀ,	c	5	

Combining Probabilities

Suppose we have a bag containing 24 counters: 8 red counters numbered 1 to 8, 8 blue counters numbered 1 to 8, 8 green counters numbered 1 to 8.

A counter is taken from the bag at random.

Example 1

$$p(Red) = \frac{8}{24} = \frac{1}{3}$$

$$p(Red) = \frac{8}{24} = \frac{1}{3}$$

$$p(Odd number) = \frac{12}{24} = \frac{1}{2}$$

26/11/2008

p(Red AND an Odd number) =
$$\rho(\text{Red 3}, \text{Red 5}, \text{Red 7}) = \frac{4}{24} = \frac{1}{6}$$

Note that:

This example illustrates the rule that:

If we know p(X) and p(Y), we can find p(X AND Y) by

MULTIPLYING suitable probabilities

Example 2

$$p(Odd number) = \frac{12}{24} = \frac{1}{2}$$
 $p(8) = \frac{3}{24} = \frac{1}{8}$

p(Odd number OR 8) =
$$\frac{15}{24}$$
 = $\frac{5}{8}$

$$\frac{12}{24} + \frac{3}{24} = \frac{15}{24} \qquad \left(\text{ or } \frac{1}{2} + \frac{1}{8} = \frac{5}{8} \right)$$

Example 3

$$p(Red) = \frac{8}{24} = \frac{1}{3}$$
 $p(8) = \frac{3}{24} = \frac{1}{8}$

$$p(8) = \frac{3}{24} = \frac{1}{6}$$

$$p(\text{Red OR 8}) = \frac{10}{24} = \frac{5}{12}$$

$$\frac{8}{24} + \frac{3}{24} \neq \frac{10}{24}$$

$$\frac{8}{24} + \frac{3}{24} \neq \frac{10}{24}$$
 (one bead is both Red and)

These two examples illustrate the rule that:

If we know p(X) and p(Y), we can find p(X OR Y) by ADDING p(X) and p(Y), PROVIDED that X and Y are MUTUALLY EXCLUSIVE ie they cannot both happen

Example 4

Ann and Briony are both going to take their driving test. The probability that Ann passes is $\frac{2}{3}$, and that Briony passes is $\frac{3}{4}$

(a) Find the probability that they both pass

$$P(A \text{ passes AND B passes}) = \frac{2}{3} \times \frac{3}{4}$$

$$= \frac{6}{12}$$

$$= \frac{1}{2}$$

(b) Can we find the probability that Ann OR Briony passes by adding $\frac{2}{3}$ and $\frac{3}{4}$?

Example 5

There are 4 candidates in a mock election at school, including Ann and Briony. Only one candidate will be elected. p(Ann wins) = 0.4, and p(Briony wins) = 0.3

What is the probability that Ann OR Briony is elected?

Anv	\ \ \	XLLY	ing	مده		Bro	~~	wir	inin	م د	ve	ı	ı	
MU	TUF	XLLY	E	KCL	USI	UE	ens	nts	(1	Ley	Ca	~1+		
00	th	hap	per).										
D	(A	vn 9	- T	3 no	24	4 كرا	elec'	red)	こ	0,4	+ 0	5.3		
\									z	0,	7			

Tree diagrams

These are a way of showing all possibilities in a systematic way.

Example 1

Ann and Briony are both going to take their driving test. The probability that Ann passes is $\frac{2}{3}$, and that Briony passes is $\frac{3}{4}$

Find the probability that at least one of them passes.

[Let A mean "Ann passes" and B mean "Briony passes"]

At least one girl passes on each of the top three branches. So:

p(at least one passes) =
$$\frac{6}{12} + \frac{2}{12} + \frac{3}{12} = \frac{11}{12}$$

This illustrates the method for tree diagrams:

- Multiply the probabilities along the branches to get the "AND" probability at the end of the branch
- Select the required branches and add the probabilities at the end of those branches to get the answer

[We really only need to work out the probability at the end of the required branches.]

Example 2

A bag contains 6 red beads and 4 blue beads. Two beads are taken from the bag. Find the probability of getting two beads of the same colour

[Note that the probabilities for the second bead will **change** depending on what colour the first bead was.]

p(two beads of the same colour) =
$$\frac{30}{90} + \frac{12}{90}$$

 $\approx \frac{42}{90} \approx \frac{7}{15}$