Pythagoras’ Theorem

The side opposite the right angle in a right-angled triangle is called the **hypotenuse**.

Pythagoras’ Theorem states that:

The area of the square on the hypotenuse of a right-angled triangle is equal to the sum of the areas of the squares on the other two sides.

or in symbols:

\[a^2 + b^2 = c^2 \]

Examples

1. Find \(x \)

\[x^2 = 7^2 + 6^2 \]
\[= 85 \]
\[x = \sqrt{85} \approx 9.22 \text{ cm} \]

2. Find \(x \)

\[5^2 + x^2 = 13^2 \]
\[\Rightarrow x^2 = 13^2 - 5^2 \]
\[= 169 - 25 \]
\[= 144 \]
\[x = 12 \text{ cm} \]
Find the area of this triangle.

\[h^2 = 17^2 - 8^2 \]
\[= 289 - 64 \]
\[= 225 \]
\[h = \sqrt{225} \]
\[= 15 \text{ cm}. \]

Area = \(\frac{1}{2} \times 16 \times 15 \)
\[= 120 \text{ cm}^2 \]

(4)

In \(\triangle ABC \):
- \(AB = 7 \text{ cm} \)
- \(BC = 3 \text{ cm} \)
- \(CD = 8 \text{ cm} \)
Find \(AD \).

First find \(h \):
\[h^2 = 7^2 - 3^2 \]
\[= 40 \]

Now find \(AC \):
\[x^2 = 8^2 + h^2 \]
\[= 64 + 40 \]
\[x = \sqrt{104} \]
\[= 10.2 \text{ cm} \quad (3 \text{ s.f.}) \]