Intersecting Chords Theorem

This states that if two chords of a circle intersect as in the diagram below,

$$AX \times BX = CX \times DX$$

Proof

We can prove this by forming two triangles as shown.

Examples

1) Find DX

$$D \times \times 5 = 8 \times 3$$
 $D \times \times 5 = 24$
 $D \times = 24$
 5

2) X is the midpoint of CD. Find DX

Let
$$0x = y$$

 $y \times y = 9 \times 4$
 $y^2 = 36$
 $y = 6$

8cm

3cm

В

3) DC = 10cm. DX is shorter than CX. Find DX

$$y(10-y) = 8 \times 3$$

 $10y-y^2 = 24$

$$|0y-y^{2}| = 24$$

$$(-10y) (+y^{2}) (+y^{2}) (-10y)$$

$$0 = y^{2} - 10y + 24$$

$$0 = y^2 - 10y + 24$$

E. Her
$$y-4=0$$
 or $y-6=0$ $y=4$ $y=6$

Note that the same result works if the lines cross outside the circle. But the distances to be multiplied are always from a point on the circle to the point where the lines cross:

Examples

$$A \times \times 5 = 11 \times 3$$

$$A \times \times 5 = 33$$

$$A \times = \frac{33}{5}$$

$$= 6.6 \text{ m}$$

2) Find BX

$$(13+3) \times y = 10 \times 3$$

$$13y + y^2 = 30$$

$$(-30)$$

$$(y+15)(y-2) = 0$$

Either $y+15=0$ or $y-2=0$
 $y=-15$ or $y=2$
(not possible) BX = 2 cm

 $y^2 + 13y - 30 = 0$

$$y-2=0$$
 $y=2$
 $BX=2m$

