Intersecting Chords Theorem

This states that if two chords of a circle intersect as in the diagram
below,
AX x BX = CX x DX

Proof
We can prove this by forming two triangles as shown.
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Dx x § =
VX =S
DX = 24

¢
»
-
>

2) X is the midpoint of CD.
Find DX
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3) DC = 10cm. DX is shorter than CX
Find DX

e ﬁx-:a:)

>

‘3(“"@ = I %Y c
\03«\5" = lL\’
(o) (rq) () Eroy)
o = \\);L.—\OJ-(—?--L{’
D = (8- 9W(y-¢°)

\a—ft-( - O



Note that the same result works if the lines cross outside the circle. But
the distances to be multiplied are always from a point on the circle to the
point where the lines cross:

AX x BX=CX x DX
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2) Find BX
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