Solutions to Past Paper Questions - Angles in Circles

- 13) (a) (i) RPQ = 56° (alternate segment theorem)
 - (ii) ROQ = 112° (angle at centre is twice angle at circumference)
 - (b) (i) BAD = $180 132 = 48^{\circ}$ (opposite angles of cyclic quadrilateral) So BAC = $48 - 25 = 23^{\circ}$
 - (ii) ABC = 90° (angle in a semicircle) DBC = 25° (angles in the same segment) So ABD = $90 - 25 = 65^{\circ}$
- 10) (a) $PQR = 90^{\circ}$ (angle in a semicircle)
 - (b) PRQ = 56° (angles in the same segment)
 - (c) POQ = 112° (angle at centre is twice angle at circumference)
- 12) (a) BAC = $80^{\circ} \div 2 = 40^{\circ}$ (angle at centre is twice angle at circumference)
 - (b) OBC = $(180^{\circ} 80^{\circ}) \div 2 = 50^{\circ}$ (OBC is an isosceles triangle) ABC = 38° (alternate segment theorem) So OBA = $50^{\circ} - 38^{\circ} = 12^{\circ}$
- (c) If we could draw a circle with diameter ED, passing through A, then EAD would be an angle in a semicircle and so would be 90° . But EAD = $40^{\circ} + 38^{\circ} = 78^{\circ}$. So it is not possible.
- 12) (a) PQT = 90° (angle between tangent and radius) so PQR = 90° 56° = 34°
 - (b) PRQ = 90° (angle in a semicircle) QRT = 56° (TR = TQ because both are tangents, so TRQ is isosceles) PRT = 90° + 56° = 146°