All the points with $x$-coordinate 3 lie on a vertical line. We call this "the line $x = 3$".

Any vertical line is called "$x = (a\text{ number})$".

All the points with $y$-coordinate 2 lie on a horizontal line. We call this "the line $y = 2$".

Any horizontal line is called "$y = (a\text{ number})$".

All the points where the $y$-coordinate is equal to the $x$-coordinate lie on a diagonal line. We call this "the line $y = x$".
The line \( y = -2x \) is all points like \((5, -5)\) or \((2, -2)\) or \((-3, -(-3))\) which is \((-3, 3)\) or \((0, 0)\).

Another way to show the coordinates corresponding to a certain equation is to use a table.

E.g.,

\[
\begin{array}{c|c|c|c|c}
\alpha & -5 & -2 & 0 & 2 & 5 \\
\hline
y & -7 & -1 & 3 & 7 & 13 \\
\end{array}
\]

\[y = 2x + 3\]