Changing the subject of a formula

- more examples

(1) Make \(x \) the subject of:

\[
\frac{x^2}{a} - b = c \quad \text{(first make } x^2 \text{ subject)}
\]

\[
\left(+ b \right) \quad \left(+ b \right)
\]

\[
\frac{x^2}{b} = b + c
\]

\[
\left(x \ a \right) \quad \left(x \ a \right)
\]

\[
x^2 = a(b + c)
\]

Last step:

\[
\frac{x}{a} = \sqrt{a(b + c)}
\]

(2) Make \(x \) the subject of:

\[
x = \frac{a}{c + b}
\]

\[
\left(x + b \right) \quad \left(x + b \right)
\]

\[
x^2 + a = c(x + b)
\]

Here the letter \(x \) appears more than once. So we need to get all \(x \) terms on one side and all “non-\(x \)” terms on the other side.

\[
x^2 - a = cx + bc
\]

\[
\left(+ a \right) \quad \left(+ a \right)
\]

\[
x = cx + bc + a
\]

\[
\left(- cx \right) \quad \left(- cx \right)
\]

\[
x - c x = bc + a
\]

Factorize so that the letter \(x \) only appears once

\[
x(c - 1) = bc + a
\]

Divide by the bracket:
\[xc = \frac{bc + a}{1 - c} \]

3) Make \(x \) the subject of

\[P = \sqrt{s + \frac{x}{t}} \]

(square both sides)

\[p^2 = s + \frac{x}{t} \]

\[(-s) \]

\[p^2 - s = \frac{x}{t} \]

\[(x \times t) \]

\[t(p^2 - s) = x \]

4)

\[P = \frac{\sqrt{x + Q}}{R} \]

(square both sides)

\[(PR)^2 = x + Q \]

\[(-Q) \]

\[P^2 R^2 - Q = x \]