(b) (i) Solve the inequality \(4y + 3 \geq 1\)

(ii) Write down the smallest \textbf{integer} value of \(y\) which satisfies the inequality \(4y + 3 \geq 1\).

\[y = \ldots\] (3)

8.

Diagram NOT accurately drawn

The perimeter of this rectangle has to be more than 11 cm and less than 20 cm.

(i) Show that \(5 < 2x < 14\)

(ii) \(x\) is an \textbf{integer}. List all the possible values of \(x\).
8. (a) (i) Solve the inequality

\[5x - 7 < 2x - 1 \]

(ii) On the number line, represent the solution set to part (i).

\[\begin{align*}
-5 & \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\end{align*} \]

\[(3) \]

\[n \text{ is an integer such that } -4 \leq 2n < 3. \]

(b) Write down the possible values of \(n \).

\[(3) \]

5. \(n \) is a whole number such that

\[6 < 2n < 13 \]

List all the possible values of \(n \).

8. \(n \) is an integer such that \(-5 < 2n \leq 6 \)

(a) List all the possible values of \(n \).

(b) Solve the inequality

\[5 + x > 5x - 11 \]

\[(2) \]

(Total 5 marks)