19) (a) $4.5 \times 6.5=29.25$
(b) $\frac{3.5}{6.5}=0.538 \quad(3 \mathrm{sf})$
20) (a) Upper bound of volume $=\frac{1}{3} \times 230.5^{2} \times 146.5=2594527 \mathrm{~m}^{3}$

Lower bound of volume $=\frac{1}{3} \times 229.5^{2} \times 145.5=2554507 \mathrm{~m}^{3}$
Difference $=40020=40000 \mathrm{~m}^{3}$ (to 3sf)
16) (a) $1.65 \leq r<1.75 \quad 30.95 \leq R<31.05$
(b) Lower bound of $\mathrm{R}-\mathrm{r}=30.95-1.75=29.2$
(c) Lower bound of volume of large sphere $=\frac{4}{3} \times \pi \times 30.95^{3}$

Upper bound of volume of small sphere $=\frac{4}{3} \times \pi \times 1.75^{3}$
Divide these to get 5531
19) Area of whole sheet $=12.5 \times 10=125 \mathrm{~cm}^{2}$ (these measurements were given exactly) To get greatest possible amount of waste we need least possible area of trapezium.
This is $\frac{1}{2} \times 9.65 \times(8.65+11.35)=96.5 \mathrm{~cm}^{2}$
So greatest possible waste $=125-96.5=28.5 \mathrm{~cm}^{2}$
18) (a) Upper bound for area $=1 / 2 \times 83.5 \times 95=3966.25 \mathrm{~mm}^{2}$
(b) Lower bound for $\tan x=\frac{85}{83.5}=1.0179 \ldots$
(d) To 2sf, $\mathrm{UB}=52000 \mathrm{~mm}^{3}$ and $\mathrm{LB}=46000 \mathrm{~mm}^{3}$ which are not the same.

To 1sf, both UB and LB are $50000 \mathrm{~mm}^{3}$, so the appropriate degree of accuracy is:
Volume $=50000 \mathrm{~mm}^{3}$ to 1 sf
Answer is asked for in cm^{3}, so convert to $\mathbf{5 0} \mathbf{~ c m}^{\mathbf{3}}$ (1sf)
9) (a)

$$
\frac{B D}{120}=\tan 15^{\circ}
$$

$$
B D=120 \times \tan 15^{\circ}=32.15
$$

$C D=148-B D=116 \mathrm{~cm}$ to nearest cm
(b) Use $\mathrm{BC}=147.5 \mathrm{~cm}, \mathrm{AB}=120.5 \mathrm{~cm}$, angle $\mathrm{DAB}=15.5^{\circ}$

